Enhanced anticonvulsant activity of ganaxolone after neurosteroid withdrawal in a rat model of catamenial epilepsy.
نویسندگان
چکیده
Perimenstrual catamenial epilepsy, the exacerbation of seizures in association with menstruation, may in part be due to withdrawal of the progesterone metabolite allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), an endogenous anticonvulsant neurosteroid that is a positive allosteric modulator of gamma-aminobutyric acid(A) receptors. Neurosteroid replacement is a potential approach to therapy, but natural neurosteroids have poor bioavailability and may be converted to metabolites with undesired progestational activity. The synthetic neuroactive steroid ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnane-20-one) is an orally active analog of allopregnanolone that is not converted to the hormonally active 3-keto form. To assess the potential of ganaxolone in the treatment of catamenial seizure exacerbations, a state of persistently high serum progesterone (pseudopregnancy) was induced in 26-day-old female rats with gonadotropins, and neurosteroids were withdrawn on postnatal day 39 with finasteride, a 5alpha-reductase inhibitor that blocks the conversion of progesterone to allopregnanolone. Finasteride treatment during pseudopregnancy results in a reduction in the threshold for pentylenetetrazol seizures. During this state of enhanced seizure susceptibility, there was a 3-fold increase in the anticonvulsant potency of ganaxolone (control ED(50) = 3.5 mg/kg; withdrawn = 1.2 mg/kg) without a change in the potency for induction of motor toxicity in the rotarod test. The plasma concentrations of ganaxolone did not differ significantly in control and withdrawn animals; the estimated plasma concentrations of ganaxolone producing 50% seizure protection were approximately 500 and approximately 225 ng/ml in control and withdrawn rats, respectively. Unlike ganaxolone, neurosteroid withdrawal was associated with a decrease in the anticonvulsant potency of diazepam (control ED(50) = 1.9 mg/kg; withdrawn = 4.1 mg/kg) and valproate (control ED(50) = 279 mg/kg; withdrawn = 460 mg/kg). The enhanced anticonvulsant potency of ganaxolone after neurosteroid withdrawal supports the use of ganaxolone as a specific treatment for perimenstrual catamenial epilepsy.
منابع مشابه
A mouse kindling model of perimenstrual catamenial epilepsy.
Catamenial epilepsy is caused by fluctuations in progesterone-derived GABA(A) receptor-modulating anticonvulsant neurosteroids, such as allopregnanolone, that play a significant role in the pathophysiology of epilepsy. However, there is no specific mouse model of catamenial epilepsy. In this study, we developed and characterized a mouse model of catamenial epilepsy by using the neurosteroid-wit...
متن کاملCatamenial Epilepsy: Discovery of an Extrasynaptic Molecular Mechanism for Targeted Therapy
Catamenial epilepsy is a type of refractory epilepsy characterized by seizure clusters around perimenstrual or periovulatory period. The pathophysiology of catamenial epilepsy still remains unclear, yet there are few animal models to study this gender-specific disorder. The pathophysiology of perimenstrual catamenial epilepsy involves the withdrawal of the progesterone-derived GABAergic neurost...
متن کاملPerimenstrual-like hormonal regulation of extrasynaptic δ-containing GABAA receptors mediating tonic inhibition and neurosteroid sensitivity.
Neurosteroids are endogenous regulators of neuronal excitability and seizure susceptibility. Neurosteroids, such as allopregnanolone (AP; 3α-hydroxy-5α-pregnan-20-one), exhibit enhanced anticonvulsant activity in perimenstrual catamenial epilepsy, a neuroendocrine condition in which seizures are clustered around the menstrual period associated with neurosteroid withdrawal (NSW). However, the mo...
متن کاملNeurosteroids as endogenous regulators of seizure susceptibility and use in the treatment of epilepsy.
Neurosteroids such as allopregnanolone are positive allosteric modulators of GABAA receptors with powerful antiseizure activity in diverse animal models. Neurosteroids may be endogenous regulators of seizure susceptibility, for example, in catamenial epilepsy. Clinical trials with the synthetic neurosteroid analog ganaxolone in the treatment of refractory partial seizures and infantile spasms h...
متن کاملRole of Anticonvulsant and Antiepileptogenic Neurosteroids in the Pathophysiology and Treatment of Epilepsy
This review highlights the role of major endogenous neurosteroids in seizure disorders and the promise of neurosteroid replacement therapy in epilepsy. Neurosteroids are endogenous modulators of seizure susceptibility. Neurosteroids such as allopregnanolone (3α-hydroxy-5α-pregnane-20-one) and allotetrahydrodeoxycorticosterone (3α,21-dihydroxy-5α-pregnan-20-one) are positive modulators of GABA-A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 294 3 شماره
صفحات -
تاریخ انتشار 2000